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Abstract

‘his paper presents two new adaptive schemes for motion control of robot manipula-
tors. Tile first controller possesses a partially decentralized structure in which the control
input for each task vanable is computed based on information concerning only that vari-
able and on two “scaling factors” that depend on the other task variables. The need for
the.se scaling factors is eliminated in the second controller by exploiting the underlying
topology of the robot configuration space, and this refinement permits the development of
a completely decentralized adaptive control strategy. The proposed controllers are com-
putationally eflicient, do not require knowledge of either the mathematical model or the
parameter values of the robot dynamics, and arc shown to be globally stable in the presence
of bounded disturbances. Furthermore, the control strategies are general and can be 1m-
plemented for either position regulation or trajectory tracking in joint-space or task-space.
Computer simulation results are given for a PUMA 762 manipulator, and demonstrate
that accurate and robust trajectory tracking is achievable using the proposed controllers.
Experimental results are presented for a PUMA 560 manipulator and confirm that the
proposed schemes provide simple and effective rea.1-time controllers for accomplishing high

performance trajectory tracking.

1. introduction

Increasing the applicability, versatility, and reliability of robot manipulators requires




the development of control systems capable of providing performance superior to that

obtainable with conventional robot controllers. Of particular interest is designing control
strategies that ensure accurate motion control in the presence of uncertainties in the robot
dynamics and payload, externaldisturbances, and sensor noise. A promising approach to
this problem is to use adaptive control methods. in which an attempt is made to compensate
for uncertainties and disturbances by adjusting the controller parameters on-line based on
t he observed system performance. An advantage of the adaptive approach is the potential
to continuously improve performance while the robot is executing the task.

Much of the research on adaptive robot control has focused on designing centralized
control schemes, in which the control input for- each task variable depends on all of the
ot her task variables. Many invest igators have: considered this problem in recent years,
and as a result of these studies two broad approaches to adaptive controller development
have emerged. The first approach, called model- based adaptive control, assumes that the
structure of the manipulator dynamics is known but that the constant inertial parameters,
which appear linearly in the dynamic model, are unknown [e.g., 1-5]. These controllers
have been shown to be globally asymptotically stable and have performed well in computer
simulations and experiments. However, implementation of these schemes with general
multijointed manipulators is computationally intensive, and their design requires precise
knowledge of the structure of the entire manipulator dynamic model, Furthermore, these
adaptive controllers can lack robustness to unmodelled dynamics, sensor noise, and external
disturbances [6,7]. In the second approach to adaptive motion control, referred to as
performance-based adaptive control, the adaptive laws adjust the controller gains directly
based on the system performance. These schemes assume that very little information is
available concerning the structure and the parameter values of the robot dynamic model
[e.g,8,9]). A disadvantage of this approach is that the controller derivations relv on the
assumption that the adaptive elements in the controller can vary significantly more rapidly

than the terms in the manipulator dynamics.. On the other hand, the performance-based



methodology can be used to derive decentralized adaptive controllers,in which the control

input for a particular task variable is comnputed based oninformation concerning ouly that
variable. in contrast, adaptive schemes designed using the model-based approach caunot
be implemented in decentralized form because in these schemes the robot dynamicmodel
is incorporated directly into the control law, so that each control input depends on all of
the system variables. N

Decentralized adaptive schemes have been proposed for manipulators because of their
computational simplicity, ease of implementation, robustness, and fault tolerance relative
to centralized strategies. Studies of the decentralized adaptive motion control problem for
rigid-link manipulators have indicated that the anticipated benefits of this approach to
controller development can berealized in practice [e.g., 10-14]. Indeed, the controllers pro-
posed in these investigations are extremely simple and computationally efficient, require
very little model information, and have performed well in both computer simulations and
experiments. However, the cent rol schemes [1 O- 14] are derived using a performance-based
adaptive approach and rely on the assumption that the controller elements can vary signif-

icantly more rapidly than the terms in the manipulator dynamics. The goal of this paper

is to introduce two new adaptive manipulator controllers that enjoy the simplicity, tom-

mutational efficiency, robustness, and generality of the decentralized schemes presented in
[10-14] and, at the same time, possess the attractive characteristic of unconditional global
stability of the centralized adaptive strategies [I-5]. Very recently, there has been progress
in this direction, with Fu [15] presenting a decentralized adaptive algorithm for robot
tracking control that is globally stable. The control law given in [15] has the structure
of a robust controller, however, and appears to generate excessive control action in order
to provide good performance. The present paper proposes two new adaptive schemes for
motion control of robot manipulators: a partially decentralized strategy and a completely,
decentralized controller. The proposed algorithms are comput ationally efficient, do not

require knowledge of either the mathematical model or the parameter values of the robot



dynamics. and can beimplemented for either position 1egulation or trajectory tracking in

joint-space or task-space. It is shown that the control schemes are globally stable in t he
presence of bounded disturbances and that in the abseunce of disturbances the size of the
residual position errors can be made arbitrarily small.

The paper is organized as follows. In Section 2, some preliminary facts are established
and the overall structure of the proposed control schemes is given. The two new adaptive
motion controllers arc developed in Sections 3 and 4. The performance of the controllers
is illustrated in Section 5 through a computer simulation study and in Section 6 through
an experimental investigation. Finally, Section 7 summarizes the paper and draws some

conclusions.

2. Problem Formulation

This paper considers the decentralized adaptive motion control problem for rigid-link
manipulators. Let y define the position and orientation of the robot cnd-effecter relative to
a fixed user-defined reference frame and note that, in the most general case, the elements
of y are local coordinates for some smooth manifold M of dimension m. The forward
kinematic and differential kinematic maps between the robot joint coordinates 6' € A" and

the end-cflector coordinates y can be written as
y=h(8), vy =J(0)f (1)

where A/ is a smooth manifold of dimension n, h : A= M, and J €R™*"is the
end-cffector J acobian matrix.

It is often desirable to formulate the manipulator control problem in terms of general-
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operates directly in the space where the task is executed. A task-space formulation can

also be realized if the manipulator is kinecmatically redundant (when m <n) by utilizing an
“augmented task-space” approach [e.g., 16-20]. In what follows. wc shall consider nonre-
dundant and redundant robots together and formulate the manipulator control problem
interins of a set of n generalized coordinates x. Typically, x is obtained by augimnenting y
with a set of n -- m kinematic functions that define some auxiliary task to be performed
by the manipulator. 10 retain generality, wc shall require only that the elements of x arc
local coordinates for some smooth manifold A" of dimension n, and that the kinematic. rela-
tionship between 6 and x is known and continuous and can be written in a form analogous
to (I):

x = ha(o), x = Jo(6)8 2)

where h,: N — X and J, € R"*". Observe that for x to be a valid generalized coordinate
vector, the elements of x must be independent in the region of interest; thus it will be
assumed in our development that J,isof full rank. Note also that joint-space control is
trivially recovered by defining h, to be the identity map.

Consider the manipulator dynamic model written in terms of the generalized coordi-

nates X as

F = H(x)X + Vc(x, X)x + G(x) + d(x, x,1) (3)

where F ¢ R" is the generalized force associated with x, H € R™""is the symmetric,
positive-definite inertia matrix, Vec€R"*" quantifies Coriolis and centripedal acceleration
effects and is related to H via H = V. + Vc’f, and G € R"isthe vector of gravity forces.
The term d € R™ is a vector of bounded but otherwise arbitrary disturbances that can
represent unmodelled state-dependent effects (su ch as Coulomb friction) or time-dependent
disturbances (such as the forces arising from a time-varying payload). ‘I'he dynamics (3)
represents a Hamiltonian system and therefore possesses a well-understood structure. For

example, 1n addition to the properties already mentioned, it can be shown that the terms

H, G arc bounded functions of x whose time derivatives H,G are also bounded in x and
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depend linearly on x, and that the matrix V.. is bounded in x and depends linearly 011 x.
These properties arc established for any set of generalized coordinates x in [21.22;and wii
prove useful in the devc]épment of the proposed adaptive controllers.

Each of the control systems proposed in this paper consists of two subsystems: ai.
adaptive scheme that produces the task-space controlinput ¥ required to ensure tha:
the system (3) evolves from its initial state to the desired final state along some specifiec
trajectory x4(t) € A" (where x4 is bounded with bounded derivatives), and an algorithm fo:
mapping the control input F to a physically realizable joint-space control torque T € 3?”. I
will be shown that these controllers also provide regulation if the final desired configuratior
X4 is specified as a constant and the intermediate trajectory is not stipulated. If x is choser.
as described above, then the F — T map required by the control system is simply .e.g.
23]

T=J, F (4

However, when the manipulator is cinematically redundant then alternative definitions for
x can lead to other ¥ -i T maps, aud there is considerable flexibility associated with
this approach to redundancy resolution [19,20,23,24]. For the remainder of the paper it
is assumed that such a map can always be constructed and that, equivalently, the control
input F can be commanded directly. Therefore the focus of the subsequent discussion is

on the adaptive control of the system (3),

3. Partially Decentralized Adaptive Control Scheme
We now turn to the derivation of the first adaptive motion controller. Consider the

following decentralized task-space control law structure:
Fp = ai)Tai 4 bi(Dzai + fi(t) 4 kpi(ei 4 kui()ei for i=1,2,....n i}

where the subscript i refers to the ith element of the vector, €;= Zdi — z;isthe 2t}

component of the trajectory tracking error, and the scalars @i(t), bi(t), fi(t), kpi(t). anc
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kvi(t) arc adaptive gains whose update laws are to be determined. In this control law,

the first three terms on the right hand side represent feedforward components and the last
two quantities arc feedback elements.tor the subsequent development. it is notationally
convenient to write the n components of the control law (5) together as follows:

F = A()kq4 B()%a 4 £(1) 4 K()e 4 Ko(t)e 6)

I

where A = diag(ae;) ¢ R"*", B = diag(b;) € &>, Ky = diag(k,;) € R™™", and I, =
diag(ky;) € R"*. Applying the control law (6) to the manipulator dynamics (3) vields

the tracking error dynamics:

Hé + Vet Kped Kped ¥4 $uxa4 Pvxg - d =0

—
-1
~—

where @ = -G, &y = A-H. and v = B-V,.. The adaptation laws for A, 3, f, Ky Ik,
are now derived using a Lyapunov-based design method. We specify that K, and I,
possess both constant and adaptive components, so that kpi(t) = kpoi + kpii(t) and kvi(t) =
kyoi +kvei(t) With kpoi >0 and kvoi >0 Vi; note that this maybe viewed as simply requiring

that kpi and k.i be set to positive values initially. Define the Lyapunov function candidate

Y, ::%éTHé-t%eTKpoc + e¢THef(1 + | e |)

1 1 1 1 1
4- EC] fTf + -éc?aTa + 503bTb + 5041‘(:“(? + -Z—Cskz‘kv (8)
where € and the care positive scalar constants, || .|| denotes the standard Euclidean

norm, fpo = diag(kpoi) € R™*™, a = [a1,..., ap)T € R™ ,b = [by, ..., ba]T € R", K, =
kptry - kptn)T €R™, and ky =[kyary - . - - kutn]” € W. Observe that V in (8) is a positive-
definite, radially unbounded scalar function of e, c, f, a, b, kp, and k, provided ¢ is chosen

so that

¢ < Pmin(FKpo ) Amin(H))? [ Amaz(H) (9)

where Amin('),/\m“(-)dcnotc the minimum and maximum eigenvalue of the matrix ar-
gument, respectively. Note that the Lyapunov function candidate (8) contains a “cross-

product-term” €7 He/(14 || e ||). Including such a term is proposed by Bayard and Wen {4)
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to provide a certain form of Lyapunov function derivative and by Koditschek [23] based on
elegant arguments concerning the Riemannian geomet 1y of the state-space of mechanical
systems. Alternatively, this construction may be viewed as a natural extension of the use
of general quadratic forms (instead of simple sums-of-squares) as Lyapunov functions fo,
hinecar systemns.

We now investigate the stability of the error dynamics (i) usingt}i(fl.yapunov func-
t ion candidate (8). Differentiating V along the vector field defined by (7) yields, after

simplification

.']‘

. € . e’ ¢ .7
V=-—elKye— eTK e 4 — elHeé - ¢THe
T4 el T 14 n e || ell(t+ecl)?
T X
4 -ﬁfe” ” (VTé — Kye + d)+e7d + {T[erf - q) (10)

+aT(coa- [q%a]] + bT[csb - [ax4]] + k7 lca k kp — [qel]

1 kT [eskoe — [a€]) + QT [HXa 4 VeeXa + G]

where the identity H =V, 4+ VT is used. In (10), Kvo = diag(kvoi) € W™, q =
€4 cc/(1+ |le||) is a weighted and normalized position/velocity error, and [zw] =
(2104, zowq -, znwn]TG%" for any two n-vectors z, w. Examination of ( 10) suggests the

following adaptation laws for fir @iy by, kpei and kot

. 1
fi=-—a1fi+ o

a; = —opa; + ""q{-:idi
bi = —asbi + = Qdex (11)
kpti = —oukpti + —giei
C4q
. )
koti = —oskyi + —qi€;
Cs
where the «; are scalar functions of the form
O = Oy +4 ag “ e “, Oy > 0, g >0 1= 1,2, ) (12)



Note that in(11),(12) the o-modificaticm-like terms [26] are scaled by || ¢ |; this refinement
will be shown to provide improved convergence properties in the common case in which
the final desired manipulator configuration x4 is a constant. Substituting these adaptation

laws into (1()) yields

T
Ve o TRy~ — omelKpged - oo ¢THe- — C°% 0 _(The
T+flefl 7 141 e e [[(14.] eil)?
(CT 7 - T 2
+ T-_C"—(—:ﬂ(lcce ~hNwedd)+e'd- ayar f| (13)

- azcrll @ ||? - ases|| b P — aqed] kpe I* - ases|| kue )P

+ qT[HS&d 4 Veexq + G]

The properties of G, H, and V. established in {21,22] and summarized in Section 2 together

with the bound edness of d, x4, Xq permit the following bound on V in (13) to be derived:

€

14 Heﬂ

€

I+]e]
1 . . .
A g Omar(I € I 4 ekoll & I + vmaskoll € [ ~ aroen | £ (14)

V <- ’\min(KvO)” ¢ "2 =

Amin(Fp0)ll € IIF + Amaz(H)|| € |}

~ aec2|| @ "2 — azocs]| b ”2 - (rygoCy " kpt ”2 — ars0Cs || Ky ”2

A 70+ || €l +dmall € ]

where 70,1, are positive scalar constants obtained through routine manipulation, £, is a
scalar upper bound on the linear dependency of V. on x (i.e, || Vecll p <ko}l X || VX with
”np the Frobenius matrix norm), and dp,., anchayafe scalar upper bounds on the
(norms of the) disturbance vector d and desired velocity vector x4, respectively.

An examination of the inequality (14) reveals that proper selection of the controller
parameters ICpg, {5, and ¢ will ensure that the first six terms on the right side of (14)

are negative-definite in e and e. Indeed, this desirable result is obtained provided these

controller parameters are chosen so that

! >max{’ By - s }
€ 4/\min(1{v0) T dupgdk, [/\m,‘n(I{po))\min('H)]1/2
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where the inequality (9) is incorporated directly into this constraint for completeness.
Note that the selection process for these parameters does not require knowledge of H. but
instead only very conservative upper and lowci bounds for this matrix. This is because
the controller parameters appear in all terms in ( 15). and their selection can therefore be
used to “mask’the (potentially considerable) uncertainty regarding H.Similar analysis of
t he remaining terms in ( 14 ) shows that f, .4, 3. \,,,. I\, appear in only negative-definite
quantities, and that the positive terms in this expression depend at most linearly on || ¢ |-

This implies that the set S defined as
S={e,¢,f,A, B, Ky, Kyy | V >0) (16)

is compact and includes the origin. These properties of S together with the positive-
definite, radially-unbounded structure of V in (8) indicate the existence of a constant
value V .of V such that V < 0 whenever V>V @ , Which is sufficient to ensure that e, €
and all of the adaptive gains arc bounded [26].

Several observations can be made concerning the adaptive control strategy (5),(11).
First note that the proposed control law is extremely simple, requires very little information
concerning the manipulator dynamics, and is partially decentralized in that the control
input for each task variable is computed based on information concerning only that variable
and on two scaling factors |l e || and 14| e|. Thus the proposed control scheme
provides a computationally efficient, modular, and readily implementable solution to the
manipulator trajectory tracking problem. Next, consider the situation where there are
no external disturbances, so that d = O. Then, in the common case in which the final
desired manipulator configuration Xgq is a constant, the errors e, e can be made arbitrarily
small by increasing the adaptation gains 1/¢;; this result is established in the Appendix.
Observe that this latter result indicates that the proposed scheme is well-suited for the
position regulation problem. Note that increasing the adaptation gains does not ordinarily
lead to large or rapidly varying manipulator actuator torques, since the 1 /c ,govern the

rate of adaptation of the controller gains and only indirectly influence the magnitudes of
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these termns [27]. This behavior is illustrated in the computer simulations and experiments

in Scctions d and 6. and represents an advantage of the adaptive control approach over
strategies such as robust’ control, where high gains often lead to excessive control action.
An additional obscrvation is that the scalar adaptation gains 1/c can be replaced with
the appropriate diagonal matrices for increased flexibility and performance;scalar gains

are used in the above analysis for simplicity of development. c e

4. Completely Decentralized Adaptive Control Scheme

The adaptive control strategy (5),(1 1) is not completely decentralized because t he con-
trol input for each task variable depends on the two scaling factors || e || and 1+ ||e |,
which are functions of the tracking error for all ot hcr task variables. The need for these
scaling factors is eliminated in this section by exploiting the topology of the robot config-
uration space, and this refinement permits the development of a completely decentralized
control scheme. More specifically, observe that in deriving the controller (5),(11) the only
assumption made regarding the manipulator configuration space is that the elements of
the generalized coordinate vector x are local coordinates for some smooth manifold A" of
dimeunsion n. In most cases, however, it is known that the configuration space is compact,
and this additional feature can bc important from the perspective of manipulator control.
The idea of utilizing the topology of the manipulator configuration space in the design of
control schemes was first proposed by Wen, Kreutz-Delgado, and Bayard [28]. These re-
searchers present a class of controllers for all-revolute robots whose design took advantage
of the fact that the manipulator joint-space is the n-torus 7"; included in this class of
controllers is a model-based adaptive strategy. Their approach essentially involves select-
ing configuration space error coordinates which reflect the topology of 7" and defining an
‘lerror potential energy” (or error metric) that is also compatible with this topology.In
what follows, we revisit the manipulator control problem and consider the decent ralized

adaptive coutrol of robots possessing a compact configuration space. For simplicity. we
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restrict our attention to joint-space control of ali-revolute manipulators, and adopt defini-

tions for configuration error and error potential energy 0117 “ that are similar to the ones
givenin [2 S). We note, ” however, that theseideas can be extended in a natural way to
task-space control of all-revolute manipulators, and indeed to the control of manipulators
with prisinatic joints provided that these joints have finite travel.

Consider the following parameterization of configuration error e =. 64 -0 [28):

qo = [cos( 92—] ), cos( %?) ..... cos( %])] T
1= [sin( %1— )s sin( 523 ) sin(—c;)2 G (17)

It is clear that q., q; provide a reasonable parameterization for configuration error on 7¢
since ¢i = atan2(gyi, 9oi) and q;= O implies ¢ == 0 mod 2z; the relationship between this
parameterization and the unit quatermon is obvious. The following expressions can be

easily derived and will prove useful in the development of the proposed controller:

. 1 ] ] 1 .
QOZ"-§[QI0] v Q1 T '2'[(10(3]

arqetalqr =0 . Il qf<nl/? (18)

The terms Qo, ¢y permit the construction of an error potential energy (or error metric)

that is compatible with the topology of the joint error space:
T
u = alKpq; t- (90— 1) Kp(qo — 1) (19)

where 1 =1, 1,..., l]T € R" and K, = diag(k,;) > 0 € R"*. The properties of error
potential energies of this form are discussed in [28] and are not repeated here. .nstead, it
is simply mentioned that U is a smooth function of e and that the global minimum of u
is O and occurs at e = O mod 4.

With these preliminanes established, we now turn to the derivation of the second

adaptive motion controller. Consider the decentralized joint-space control law structure

T; = a;i(t)8ai + bi(t)0ai + filt) + kpigri + kei€i for i =1,2,..,n (20)

12
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where kpis kvi are positive scalar constant feedback gains and ai(t),b,(t), fi(t) are scalar

adaptive elements whose update laws are to be determined. Note that for simplicity of
exposition, we arc using constant” rather than adaptive feedback gains; adaptive gains can
be derived utilizing an approach analogous to the one presented in Section 3.For the
subsequent development, it is notationally convenient to write the n components of the

control law (20) together as follows:

T = 4(1)0g 4 B(t)0a 4 f() + Kpqy -1 Kye (21)

where A = diag(ai) € R"*", B = diag(b;) € R"*", K, = diag(k,) € R"*". a n d

K, = diag(k,;) € ®"*". Applying the control law (20) to the joint-space analog of
the manipulator dynamics (3) yields the tracking error dynamics:

HéA Ve 4 K+ Kyqy4%6 + &by 4 ¢y — d = O (22)

where ®4=f-G,®y=A - H, and ¢y = B-V,. The adaptation laws for A, B, f arc
now derived using a Lyapunov-based design method. The Lyapunov function candidate
employed in this approach is constructed utilizing the error potential energy U defined in

(19):
1.4 .
V= ceHe 4 alla (- 1) Ky (ao -1)
. 1 - 1 1
+eeTHq, + 50 f7f + EcQaTa + §c3bTb (23)

where all terms are defined as in Section 3. Observe that V in (23) is positive-definite

provided e is chosen so that
€ < [2 Amin(Hp Y Amin(H))' 7 [Amas (H) (24)

We now investigate the stability of the error dynamics (22) using the Lyapunov func-
tion candidate (23), Differentiating V along the vector field defined by (22) yields. after
simplification

feT
2
+ aTlcoa — [s6g)] + bT[c3b - [s64)) -t sT[HO4+ Vebg + G + d] (25)

V=-e"Kie _eqlI,q, + Hlqoe]4 eq? (Ve — K,&) + fT[eyf - 5]
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where s = e + eq is a weighted position/velocity error. Examination of (25) suggests the

following adaptation laws for f;.ai:b;:

: 1

fi=arfid —s;
9|

. ‘1 .

Q; = Q- —- s,~0d,~ ('26)
C2

bi = —aab; 4+ —sify; e
€3

w'here the @i are positive scalar constants. Substituting these adaptation laws into (25)

vields

. ) €. . .
Ve - eTIé - €ql Kpar + EeTH [a0€) + eq? (Ve — K ,é) — aqar |l T 1P

~ ageal| a | ~ azes|| b 1P 4 sT[Hba + Veeba + G + d] 27)
from which the following bound on V can be derived:

. _ 1 :
V <= Amin(l & 1" = Amin(Kp)l i I + 5ehmar ()] & 11°
+ ekl e | i vmazkull € I = avarl £ IF — azeoll all? (28)

- 0363"[)“2-*'10-{771 el +dmasll € 1l

where 70, n; are positive scalar constants obtained through routine manipulation and VYma z
is a scalar upper bound on the (norm of the) desired velocity vector .éd.

An examination of the inequality (28) reveals that proper selection of the controller
parameters K,,Km and ¢ will ensure that the first five terms on the right hand side of
(28) are negative-definite in qy and €. Indeed, this desirable result is obtained provided

these controller parameters are chosen so that

on1/2}
i_ > max{ﬁ)y"F-’-(H)- +2n %k, Amaz(H) (29)

Ao n(I) = 20mar by (2K hmim ()2 )

where the inequality (24) is incorporated directly into this constraint for completeriess.

Notice that, as in the previous section, the selection process for these parameters doesnot
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require knowledge of H, but rather only very conservative estimates for upper and lowe:
bounds for this matrix. An analysis of the remaining terms in (28) shows that f. .-1. D
appear 1 only negative-definite quantities, and that the positive terms in this expression
depend at most linearly inf|€||. This iinplies that the set S defined as

S = {Q] e. f,.4, B l ‘.’ > 0} 130)

ha

is compact and includes the origin. As discussed inthe previous section, these properi ies
of & together with the structure of V in (23) are sufficient to ensure that g, ¢ and all of
the adaptive gains arc bounded [26].

Several observations can be made concerning the adaptive control strategy (20),( 26).
F.irst note that the proposed control law is exticmely simple, requires very little infor-
mation concerning the manipulator dynamics, and possesses a decentralized structure.
Thus the strategy is computationally efficient, modular, and easy to implement. All of
the observations made concerning the controller derived in Section 3 apply here without
modification. For example, it can be shown that if there are no external disturbances and
the final desired manipulator position is a constant, then the bounds on e,& can be made

as small as desired.

5. Simulation Studies

The class of adaptive control schemes developed in Sections 3 and 4 is now applied
to a large industrial robot through computer simulation. The robot chosen for this simu-
lation study is the six degree-of-freedon (DOF) PUMA 762 manipulator. The simulation
environment incorporates models of all important dynamic subsystems and phenomena,
such as the full nonlinear arm dynamics, joint stiction, sensor noise, and transmission ef-
fects, and therefore provides the basis for a realistic evaluation of controller performance
[29]. The control laws are applied to the manipulator model with a sampling period of”
two milliseconds, and all integrations required by the controller are implemented using,

a simple trapezoidal integration rule with a time-step of two milliseconds. The PUMA

-
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762 manipulator possesses a conventional design with six revolute joints configured in a
“waist-shoulder-clbow -wrist” arrangeinent, as shownin Figure 1. Precise values for all
kinematic. and dynamic model parameters for this robot are given in [30) and are used in
the simulation of the arm kinematics and dynamics. A brief characterization of the overall
robot dimensions canbe made by noting that the rcach of the arm is approximately 50in
and the total weight is almost 8501b. The simulation study consists of two parts: a nominal
performance study in which no external disturbances are applied to the robotic system.
and a robustness study where a payload-related disturbance is introduced. It is noted that
throughout the computer simulation studies, the unit of length is inch, the unit of time is
second, the unit of angle is degree, and the unit of force is pound, unless stated otherwise,

The first simulation study demonstrates the capability of the control scheme (5),(11)
to provide accurate task-space trajectory tracking under nominal conditions, in which no
external disturbances arc present. The PUMA robot is initially at rest with the joint-
space position 0(0) = [0, 90, 180,0, —90, 0]". The robot is commanded to smoothly move
its end-effector 20in in the z-direction, 20in in the y-direction, and 20in in the z-direction

in 2 seconds according to the following temporal trajectories:

z(t)=2i+ 10(1 cos(n/2)t)
y(t)=Vi+10(1 “cos(n/2)t)

z(t) = zi+ 10(1 “cos(w/2)t)

for t €[0,2], where [:c;,y;,z‘] are the initial position coordinates of the end-effecter and
all motions are specified relative to the base coordinate frame. Additionally, the robot is
required to smoothly change its end-effecter orientation from an initial orientation matrix

Rinit to a final orientation matrix Rf.'nal, where

-1 0 0 Vv3/2 -1/2 0
-Rinit = 0 -1 0 ) I{final == 1/2 \/3/2 0
0 0 1 0 0 1

and each rotation matrix R is specified relative to the base frame of the robot. The
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manipulator dynamics arid the final desired manipulator position is a constant, then the
bounds on e. € can be made as small as desired. For simplicity of development, we present
the analysis for the adaptive strategy (20),(26), and note that the results obtained hold

for both of the controllers proposed in this papa-.

Proposition: Consider t hejoint-spaceanalog of the manipulator dynamics (3) withno
external disturbances T

T = H(6)6 4 V..(6, 6)6 4+ G(8) (.41)

and the decentralized adaptive controller (20 ),( 26) for t he casec in which t he desired final

position 8y is a constant (here @1 =a and 1/¢,:= 8 for notational convenience):
Ti= fi(t) 4 kpigri 4 kvic;
fi = —ofi 4+ Bs; (:42)
si =€ 4 €qu;
a=ag+aé
The controller (A2) ensures that the manipulator dynamics (Al) evolves so that q,.e, f
arc globally uniformly ultimately bounded provided that

> max '\"‘“(H) )\ma:(H) + 2"1,2kv (’\mot(]{v))z
¢ (2’\min(1{p)Amin(H))1/2 ' ZAmin(-Kv) 4’\min(I(p))‘min(](r)
(A3)

Moreover, the ultimate bounds on qy, e can be made arbitrarily small.

Proof: Applying the control law (A2) to the manipulator dynamics (Al) yields the closed-
loop dynamics:

He + Ve + Kuyée + Kpqy + $6= 0 (A44)

Consider the Lyapunov function candidate

1.4 . .
V= He +aql Ky + (a0 — 1) Kplqo — 1)
1 .
-T T 1
H -
+ee ql-{2ﬂ¢g L P | 1)

24



temporal trajectory for this orientation change is specified using the standard “equivalent-
angle-axis” parametrization of SO(3) given by ok € R3. where k is a unit vector aligned
with the axis of rotation from the initial to the final desired orientation andé is the
angle of rotation about this axis. In this simulation. the desired orientation trajectory.
is 64 = 750(1 -- cos(n/2)t) and kq=[0. O, 1]" for t€[0. ‘2] [c.g-, 31]. Thus the robot
is commanded to translate its end-effector approximately 33in and rotate its end-effector
through 150° in 2 seconds. The decentralized task-space control strategy (5),(11) is utilized
to achieve the specified trajectory tracking. The adaptive gains A, B, f are set to zero
initially, while X,, X, are initialized to ¥po= Kvo=diag(20 20 20 1 1 1). The
remaining controller parameters are set as follows: € = 10 and &0 = @;1 = 0.001, 1 /c,= 10
for + = 1,2,..., 5. The results of this simulation arc given in Figures 2a-2c, and indicate
that accurate task-space trajectory tracking is achieved.

The next simulation in this study investigates the robustness of the controller (5),(11)
to external disturbances. -Note that when the manipulator payload mass mis time-varying,
the skew-symmetry of the matrix H- 2V,. is disrupted [32]. This result is important since
most adaptive trajectory tracking schemes (including the ones proposed in this paper)
exploit this skew-symmetry in their development. As a consequence, when the payload
varies with time and skew-symmetry is lost, then the ‘extra” terms in the manipulator
dynamic model which arise from the time-variation of the payload represent an external
disturbance to the nominal model. To examine the effect of this disturbance, the controller
(5),(11) is utilized to repeat the task specified in the first simulation, but here a time-
varying payload is introduced with mass given by m(t) = 25(1 + cos%t). Thus the payload
mass smoothly decreases from 501b to Olb during the trajectory. In this simulation, all of
the controller parameters are set to the values used in the nominal study described above.
The results of this simulation are given in Figures 3a-3c¢, and indicate that accurate and
robust task-space trajectory tracking is achieved despite the gross and continuous variation

in payload mass.
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6. Experimental Studies

The class of robot control schemes developed in Sections 3 and 4 is now applied to an
industrial robot i1 a series of experiments. The experimented facility utilized fox this study
is the J PL Robotics Research Laboratory and consists of a Unimation PUMA 560 arm and
controller, and a DEC MicroVAX 11 computer; a functional diagram of this testbed is given
in Figure 4. The MicroVAX 11 hosts the RCCL (Robot Control “C"» Library) software,
which was originally developed at Purdue University [33] and subsequently modified and
implemented at JPL [34]. During the operation of the arm, a hardware clock constantly
interrupts the 1/0 program resident in the Unimation controller at a preselected sampling
period T, which can be chosen as 7, 14. 28, or 54 milliseconds; for all experiments reported
here T,= 7ms. At every interrupt, the 1/0 program gathers information about the state
of the arm (such as joint encoder readings), and interrupts the control program in the
MicroVAX 11 to transmit this data. The 1/0 program then waits for the control program
to issue a new set of control signals, and then dispatches these signals to the appropriate
joint motors. Therefore, the MicroVAX 11 acts as a digital controller for the PUMA arm
and the Unimation controller is effectively bypassed and is utilized merely as an 1/0 device
to interface the MicroVAX 11 to the joint motors. A complete description of this testbed
is beyond the scope of the paper; the interested reader is referred to [34].

The decentralized joint-space control scheme (20),(26) is selected for implementation in
the present experimental study. The experiment consists of a nominal performance study
and a robustness study, and in this way parallels the computer simulation investigation
in Section 5. In the nominal performance study, the scheme (20),(26) is implemented for
trajectory tracking control of the PUMA arm waist joint 6,while the other joints are held
steady using the Unimation controller. In contrast, in the robustness study, the other
joints arc given a large motion using the Unimation controller while 8, tracks a trajectory
similar to the one specified in the nominal study. Observe that this motion of the joints

distal to the waist joint has the effect of a time-varying payload. Recall from the previous
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section that this results “in the application of a time-varying external disturbance to the
nominal robot dynamics.

In the nominal performance test, the PUMA arm is initially at rest with joint-space
position O(0) = O. The waist joint is commanded to change smoothly from the initial
position 6y, = O to the goal position 6, = 90° in 2 seconds usingthe cycloidal trajectory
64,= 45°(1 — sinnt) for ¢t €[0,2]. The control law (20).(26) is slightly modified to include
the capacity for adaptation in t he feedback gains using an approach similar to the one
utilized in deriving (11); this modified scheme is then used to achieve the desired trajectory
tracking. The adaptive gains .4, B, f, K,,I{, are initialized to zero and the remaining
controller parameters arc set to the following values: € =1, 1/cl =1 /¢ = 0, 1/cy =
0.1,1/¢4=0.2, 1/¢s = 0.5, and ai= O for := 1,2,..., 5. Note that, in view of the modest
computing power available and the relatively high communication overhead in the testbed
[34], no fecdforward elements are used in the experiments. While the arm is in motion,
the reading of the waist joint encoder at each sampling instant is recorded directly from
the arm, converted into degrees and stored in a data file. Figure 5a shows the desired and
actual trajectories of the waist joint angle, and the tracking error is shown in Figure 5b.
It is seen that the joint angle 6, (t) tracks the desired trajectory 84, () very closely, and
the peak value of the tracking error e(t)=:84, (f ) — 0,(t) is 1.40°, The initial lag in the
) response is due to the large stiction (static friction) present in the waist joint. Figures
6a and 6b show the tracking performance of the waist joint for the same motion using the
Unimation controller, which is operating with a sampling period of 1 millisecond; it is seen
that the peak joint tracking error in Figure 6b is 5.36°. By comparing Figures &b and €b,
it is evident that the tracking performance of the adaptive controller is noticeably superior
to that of the Unimation controller, despite the fact that the Unimation control loopis
seven times faster than the adaptive control loop.

The next expenment investigates the performance of the proposed cent roller wlien

additional robustness is required for successful completion of the desired task.Inti:-
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experiment, the control law (20),(26) is utilized to track a desired waist joint trajectory
similar to the one specified inthe first experiment. and the arm is initially in the same
configuration. In this case, however, the Unimation controller is used to smoothly move
the shoulder joint 62 and clbow joint 83 from the initial zero positions to 2= -90° and
@3 = 90° in 3 seconds during the execution of the task. observe that this is a gross and
rapid variation in the arm configuration. which produces a large and fast variation inthe’
arm inertia as seen at the waist joint. As indicated in Section 9, this variation presents
a large external disturbance to the nominal waist joint dynamics. The desired waist joint
trajectory for this experiment is 64, = 20°(¢ -- sin(2%t/3)) for t € [0,3], and all adaptive
gains and controller parameters are set to the values used in the first experiment. The
results of this experiment are shown in Figures 7a and 7b, and indicate that accurate and

robust trajectory tracking is achieved despite the large external disturbance.

7. Conclusions

Two decentralized adaptive control schemes for robot manipulators are presented in
this paper. The simplicity of the proposed controllers leads to computational efficiency, and
makes the schemes particularly suitable for implementation as real-time control algorithms
with a high sampling rate. The capabilities of the proposed control schemes are illustrated
through a computer simulation study and an experimental investigation. The results of
these studies demonstrate that the controllers provide a simple and effective means of
obtaining high performance trajectory tracking. Future work will focus on the application
of the proposed approach of controller development to the problem of robot compliant

motion control.
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and observe that V is a fiositive-definite, radially-unbounded function of a1, €, % ¢ provided
the controller parameters are chosen so that ( A3) is satisfied. Differentiating (A>ialone

(.44 ) and simplifying gives

: - €. ) o
Ve-e'h,e- cq17 Kpq+ el Hiqoe] - cq;](lr'gc - Kye)4 3}1' (<I G- JIsi

2
= - el é- cq]TI\',,q, 4 ;c ’I‘H[Qtlé] + eq; (1 - Iye) N
-Hdvm—-(G 1 aG) I 4~ liG+oGH A6

The properties of G established in [21,22] and summarized in Section 2 permit the following
bounds to be derived:

A
da

o . 1 .
=5 1964 5-(G+aG) | <~z (a0 + el € ) | 86 + W

164G < ~m t el &) AT

L T ﬂ(’)’s 7l @6 1)

where the «y; are positive seal ar constants obtained through routine manipulation and W
is a bounded function of g, €. The inequalities (A7) then permit V in (A6) to be bounded
as follows:

Og

v<—lllarn | &)@ e

1 ] 1
| @c | +'B'('71 +v2 |l & ")+B (v +vll @cll) (AS)

where the matrix Q is defined as

Q 6/\min(I(p) - }ff)\maz(l{v)
) ”%CAmn!(I<v) )‘"'i"(I(v) e ’%CAma:(H) - nl/zekv

and is positive-definite provided the controller parameters are chosen as in (A3).

Note that if f:[O, co)— R is defined as f(z)= (Q.+a)z)/a—az? with a. ag,0a;. 0,
positive scalar constants then there exist positive scalar constants b., b,such that ¢(r« =
bo/a — b2’ > f(z) Yz €[0,00) (for example, choose b,= a/4 ‘and b. = a + al/a,a).

This result allows the following upper bound on V in (A8) to be established:

1 1
V<-32TQa- Tl aG It 4B 491
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where z ={[| ql|| €[] and B is a positive scalar constant that dots not increase when
8 is increased. Examination of (A5),(A9) reveals that there exist positive scalar constants

Ai independent of B such that the following bounds on V.V can be derived:

1 1 .
Az )2 4'5—6 | @6 P<V <Xz 455 | @6 |
. A 1 T
‘"§~MHZH”m§quH?+BB (Ale)

Straightforward application of the global uniform ultimate boundedness theorem of Corless
and Leitmann [35] to (A10) yields the following ultimate bounds for |[z ||,|| G || (see [35]

for a discussion of ultimate boundedness):

1 /X3 B
Pl AL S R
=" < p ('\])‘3 ) 2/\1/\4>

e

Thus ||z ||, || ®G || are ultimately bounded, which implies that q,, &, f are ultimately
bounded, Moreover, the ultimate bound on || z 1?== || q;||> + || € ||*> can be decreased as
desired simply by increasing S.

It is interesting to note that the results presented in this Appendix are actually more
general than indicated by the statement of the proposition, For example, if there are
external disturbances d present such that d is bounded in x and d is bounded in x
and grows at most linearly with x, then arbitrarily small regulation errors can again be
concluded. This is easily verified by combining d with G in the preceding analysis and

observing that all of the arguments and conclusions still remain valid.

26



Figure 1:

H
-l
o

y position (in)

1
N
o

-30

Figure 2a:

CLpow
JOINT 3

wRIST BEKD
JOINY §

WALSY
SWIVEL
JOINY &
WAIST ROLL
JOINT 4

Illustration of PUMA 762 robot

/

0.5 1.0 15 2.0
time (see)

Desired (dashed ) and actual (solid) response of end-effecter y coordinate

in PUMA arm simulation (nominal case)

SV
-~



e , ‘
1
|
A !
/
- 20 ‘ _
o)
RS
o]
o8
o0 o i
o I
0 l I 1 _ ]
0 0.5 1.0 15 2.0
time (see)
Figure 2b: Desired (dashed) and actual (solid) response of end-effecter 2 .o, ginate
in PUMA arm simulation (nominal case)
15(
& 100
I
£
.2
:
=
Q
e
© s0
o! - | , 1 |
0 0.5 1.0 15 2.0
time (see)
Figure 2c: Desired (dashed) and actual (solid ) response of end-effecter orientation

angle ¢ in PUMA arm simulation (nominal case)

28



=
o

- -
position (in!

Yy
1
N
o

-30

Figure 3a:

3(

z position (in)
S

-t
o

Figure 3b:

R I | !
0.5 1.0 15 2.0
time (see)
Desired (dashed) and actual (solid) response of end-effecter y coordinate

in PUMA arm simulation (time-varying payload)

—

| | |
0.5 1.0 15 2.0
time (see)

Desired (dashed) and actual (solid) response of end-effector z coordinat e

in PUMA arm simulation (time-varying payload)

29



15C

(=)
o

orientation (deg)

A
o

Figure 3c:

| l

0.5 1.0
time (see)

Desired (dashed) and actual (solid) response of end-effecter orientation

2.0

angle ¢ in PUMA arm simulation (time-varying payload)

MICROVAXIl COMPUTER

p FEEOFORWARD | [
o CONTROLLER

g l u
« 0
o 7/ =
Z - CONTROL o
ol 13 FEEDBACK TORQUES =
> \ CONTROLLER ® 1z
o. - s
& ( 2
w e —— o
< 1 ADAPTATION | «
= = LAWS AUXIL RY

— SIGNAL J

JOINT ANGLES
Figure 4: Functional diagram of testbed facility

30

PUMA 560

WAISY
(JOINT 1)

WRIST ROTATION
(JOINT 4)



80

60

<0

61(t), 841(t) (deg)

20

1 1 1 1

0 1 2 3 4

Time (second)

Figure 5a: Desired (dashed) and actual (solid) response of PUMA waist angle under

adaptive controller

1.€02
1.209
1.017

0.055
0.137
-0.329
0.521 ] — l
0 1 2 3 )
Time (second)
Figure 5b:  Waist angle tracking error under adaptive controller

31




100

80

[oa]
o

61(t).641( " (deg)

N
o

Time (second)
Figure 6a: Desired (dashed) and actual (solid) response of PUMA waist angle under

Unimation controller

5.359

4
4.823
4.287
3.7s1
3.215
2.679
2.143

1.607

e(t) (deg)

1.070

0.534

-0.001 t [ 1
0 1 2 3 4

Time (second)

Figure 6b: Waist angle tracking error under Unimation controller

32




Figure 7a:

&(t) (deg)

Figure 7b

61(t),84 (' (deg)

1

2

Time {second)

Desired (dashed) and actual (solid) response of PUM A waist angle under

adaptive controller with arm configuration change

0.879

0.768

0.658

0.547

0.436

0.326

0.21s

0.10%

-0.005

0.116

0.22¢6

+Time (second)
Waist angle tracking error under adaptive controller with arm

ion change

33

configura-



25.

29.

30.

31.

32.

33.

34.

35.

10.

Koditschek. D., “Application of a New Lyapunov Function to Global Adaptive Atti-
tude Tracking”. Proc. 27th IEEE Conference on Decision and Control Austin. TX,
December 1988

Narendra. K. and A, Annaswamy, Stable Adaptive System, Prent ice Hall. Englewood
Cliffs, NJ, 1989

. Colbaugh. R., “Adaptive Point-to-Point Motion Cent rol of Manipulators”, Interna-

tional Journal of Robotics and Automation, Vol. S, 1993 (in press)-

Wen. J.. K. Kreutz-Delgado, and D. Bayard, “Lyapunov Function-Based Control Laws
for Revolute Robot Arms: Tracking Control, Robustness, and Adaptive Control”,
IEEE Transactions on Automatic Control, Vol. 37, No. 2, 1992, pp. 231-237

Glass, K. and R. Colbaugh, “A Computer Simulation Environment for Manipulator
Controller Development”, Robotics Laboratory Report 92-01, New Mexico State Uni-
versity, January 1992

Bedewi, N., E. Aronne, and P. Chang, “Robot Mathematical Modeling, Simulation,

and Parameter Identification”, Final Report for NASA Contract NAS5-29412, Task
24, March 1988

Craig, J., Introduction to Robotics: Mechanics and Control, Addison-Wesley, New
York, 1989, Second Edition

Song, Y. and R. Middleton, “Dealing with the Time-Varying Parameter Problem of
Robot Manipulators Performing Path Tracking Tasks”, Proc.29th IEEE Conference
on Decision and Control, Honolulu, HA, December 1990

Hayward, V. and R. Paul, “Introduction to RCCL: A Robot Control ‘C’' Library”,
Proc. |EEE International Conference on Robotics, Atlanta, GA, May 1984

Seraji, H., T. Lee, and M. Delpech, “Experimental Study on Direct Adaptive Control
of a PUMA 560 Industrial Robot”, Journal of Robotic Systems, Vol. 7, No. 1, 1990,
pp. 81-105

Corless, M. and G. Leitmann, “Continuous State Feedback Guaranteeing Uniform
Ultimate Boundedness for Uncertain Dynamic Systems”, JEEE Transactions on Au-
tomatic Control, Vol. 26, No. 5, 1981, pp. 1139-1144

Appendix: Analysis of Error Bounds for Proposed Control Schemes

In this Appendix, we show that when there are no external disturbances acting on the

23



